2009. október 8., csütörtök

A kvantummechanikát megalapozó kísérletek


Történeti összefoglaló


1900-ben Max Planck bevezette az energia kvantálását, hogy levezessen egy a feketetest által kisugárzott energia frekvenciafüggését helyesen leíró képletet. 1905-ben Einstein a fotoelektromos hatást azzal a feltételezéssel tudta magyarázni, hogy a fény részecskékből, fotonokból áll. Az ötlet, miszerint a foton energiájának kvantumokból kell összeadódnia, jelentős eredmény volt, mivel megszüntette a lehetőségét annak, hogy a feketetest-sugárzás végtelen nagy energiát vigyen magával, ahhoz képest, ha kizárólag csak hullámokkal kellett volna a jelenséget magyarázni. 1913-ban Bohr megmagyarázta a hidrogénatomszínképvonalait, ismét a kvantumosság feltételezésével, 1913 júliusában megjelent Az atomok és molekulák szerkezete c. cikkében. 1924-ben terjesztette elő Louis de Broglie anyaghullám elméletét, mely szerint minden anyag rendelkezik hullámtulajdonsággal és megfordítva. Ezek az elméletek, bár sikeresek, de szigorúan véve fenomenologikusak (jelenségszintűek) voltak, a kvantálásnak nem létezett precíz bizonyítása. Ezeket együtt a régi kvantumelmélet néven ismerik.
A „kvantumfizika” kifejezést először Johnston Planck Univerzuma a modern fizika fényében c. könyve alkalmazta.
A modern kvantummechanika 1925-ben született meg, amikor Heisenberg kifejlesztette a mátrixmechanikát Schrödinger pedig a hullámmechanikát, majd felírta a Schrödinger-egyenletet. Schrödinger utána megmutatta, hogy a két megközelítés egyenértékű. (Valamivel Schrödinger előtt Lánczos Kornél Heisenberg egyenleteiből kiindulva integrálalakban fogalmazta meg a kvantummechanikát.[1]) Heisenberghatározatlansági relációját 1927 fogalmazta meg, és a koppenhágai értelmezés is nagyjából ekkor öltött formát. A 1927-es évet követően Paul Dirac egyesítette a kvantummechanikát a speciális relativitáselmélettel, felfedezve az elektron Dirac-egyenletét. Ő volt az első abban is, hogy operátorelméletet használt, és bevezette a nagy hatású braket-jelölést, amit 1930-as híres könyvében tett közzé. Ugyanebben az időbenNeumann János lefektette a kvantummechanika precíz matematikai alapjait, mint a Hilbert-terek lineáris operátorainak elméletét, és ezt közzétette hasonlóképpen híres 1932-es könyvében. Ezek a munkák, mint sok más is az alapító időszakból, azóta is érvényesek és széles körben használják őket.
kvantumkémia úttörői Walter Heitler és Fritz London voltak, akik 1927-ben tették közzé tanulmányukat a hidrogénmolekula kovalens kötéséről. A kvantumkémiát rengeteg tudós fejlesztette tovább, többek között az amerikai Linus Pauling.
1927-től kezdődően kísérletek folytak arra, hogy a kvantummechanikát egyes részecskék helyett mezőkre alkalmazzák, amivel megszülettek a kvantumtérelméletek. A korai munkákban többek között DiracPauli,Weisskopf és Jordan vett részt. A kutatások a kvantumelektrodinamika megfogalmazásában csúcsosodtak ki az 1940-es években, melyben FeynmanDysonSchwinger és Tomonaga játszott nagy szerepet. A kvantumelektrodinamika az elektron, a pozitron és az elektromágneses mező kvantumelmélete, és a többi kvantumtérelmélet modelljéül szolgált.
kvantum-színdinamika elméletét az 1960-as évek elejétől kezdve öntötték formába. Ma ismert alakját PolitzerGross és Wilzcek munkássága következtében 1975-ben nyerte el. SchwingerHiggsGoldstone,Glashow úttörő munkájára építve, Weinberg és Salam egymástól függetlenül megmutatták, hogyan lehet a gyenge kölcsönhatást és a kvantum-elektrodinamikát egyetlen elektrogyenge kölcsönhatásban egyesíteni.

Filozófiai következmények


A kezdetek óta, a kvantummechanika ösztönökkel ellenkező eredményei erős filozófiai vitát keltettek és sok interpretációhoz vezettek. Még az olyan alapvető dolgoknak, mint Max Born valószínűségi amplitúdókat és valószínűségi eloszlásokat érintő alapszabályainak is évtizedekre volt szükségük ahhoz, hogy elfogadják őket.
A nagyrészt Niels Bohrnak köszönhető koppenhágai értelmezést ma a fizikusok nagy többsége elfogadja. Eszerint a kvantummechanikai jóslatok valószínűségi természete nem magyarázható más, determinisztikus elméletek segítségével, és nem egyszerűen a mi korlátozott tudásunkat jeleníti meg. A kvantummechanika azért nyújt valószínűségi jóslatokat, mert a világyetem természete maga valószínűségi és nem determinisztikus.
Albert Einstein, aki maga is a kvantumelmélet egyik megalapozója volt, nem szerette a determinisztikusságnak a mérés során való elvesztését. Úgy tartotta, hogy lennie kell egy helyi rejtett változós elméletnek a kvantummechanika alatt, s ennélfogva a jelen elmélet nem teljes. Az elmélethez ellenvetések sorozatát gyártotta, amelyek közül a leghíresebb Einstein-Podolsky-Rosen paradoxon (EPR-paradoxon) néven vált ismertté. John Bell megmutatta, hogy az EPR-paradoxon kísérletileg tesztelhető különbségre vezet a kvantummechanika és a lokális rejtett változós elméletek között. Kísérleteket végeztek és kimutatták, hogy a kvantummechanika a helyes és a világ nem magyarázható ilyen rejtett változókkal. A kísérletekben lelt bizonyos "rések" azonban azt mutatják, hogy a kérdés még nincs teljesen lezárva.
Everett sokvilág-interpretációja, amit 1956-ban fogalmazott meg, azt állítja, hogy a kvantummechanika által megengedett lehetőségek mind együtt megjelennek egy multiverzumban, ami sok független, párhuzamosan létező univerzumból áll. Ez nem jelenti új axióma bevezetését a kvantummechanikában, hanem éppen ellenkezőleg, egynek, a hullámcsomag összeomlásának axiómájának az elvetését jelenti. Az összes lehetséges konzisztens állapot és a mérőberendezés (beleértve a megfigyelőt is) is egy valódi fizikai (nemcsak formális matematikai, mint más interpretációkban) kvantum-szuperpozícióban vannak. Különböző rendszerek konzisztens állapot-kombinációinak ilyen szuperpozícióját összefonódott állapotnak hívjuk. Míg a multiverzum determinisztikus, mi nem determinisztikus, valószínűségi viselkedést érzékelünk, mivel mi csak az univerzumot tudjuk megfigyelni, azaz csak a mi általunk lakott világnak az említett szuperpozícióhoz való konzisztens állapot hozzájárulását. Everett interpretációja tökéletes összhangban van John Bell kísérleteivel, és ösztönösen is érthetővé teszi őket.

Alkalmazások


A kvantummechanika nagy sikereket ért el az anyagot alkotó szubatomi részecskék – az elektronproton és neutron –, az atomok és molekulák leírásában.
Alapvető fontosságú annak megértésében, hogy az egyes atomok hogyan állnak össze molekulákká. A kvantummechanika kémiai alkalmazását kvantumkémiának hívjuk. A kvantummechanika kvantitatív rálátást nyújt a kémiai kötések mibenlétére, arra, hogy mely molekulák kedvezőbbek energetikailag melyekhez képest, és kb. mennyivel. A számítási kémia legtöbb számolása a kvantummechanikán alapul.
A modern technológia jórészt olyan skálán működik, ahol a kvantumeffektusok jelentősek. Ezekre példa többek között a lézer, az elektronmikroszkóp és a mágneses rezonancia képalkotás (MRI). A félvezetőktanulmányozása vezetett a dióda és a tranzisztor kifejlesztéséhez, amik nélkülözhetetlenek az elektronikában.
A kutatók ma a kvantumállapotok erőteljes befolyásolásának módszereit keresik. Erőfeszítéseket tesznek a kvantumkriptográfia kifejlesztésére, ami az információátadás garantáltan biztonságos módját jelenti majd. Egy távlatibb cél a kvantumszámítógép kifejlesztése, ami a várakozások szerint bizonyos számolásokat exponenciálisan gyorsabban végezne el, mint a klasszikus számítógép. Egy másik aktív kutatási terület akvantum-teleportáció, ami kvantumállapotok tetszőleges távolságra való átvitelével foglalkozik.

Matematikai formalizmus


A kvantummechanika szigorú, formális matematikai felépítésében, mely többek közt Paul Dirac és Neumann János nevéhez fűződik, a kvantummechanikai rendszerek lehetséges állapotait egységvektorokkal(„állapotvektorok”) reprezentáljuk, melyek a komplex szeparábilis Hilbert-tér egységgömbjét alkotják (az „állapotteret”) A Hilbert-tér pontos meghatározása az adott fizikai rendszertől függ, például ha egy elektronburok elemeinek a tér adott pontjában való tartózkodási valószínűségét, az elektronfelhő „intenzitását” akarjuk leírni, akkor célszerű a négyzetesen integrálható függvények Hilbert-terét használni ennek leírására, míg egyetlen elektron spinjének állapotterét pusztán két komplex sík direkt szorzata is leírhatja.
A kvantumállapotok időbeli változásait nem relativisztikus esetben a Schrödinger-egyenlet – másodrendű differenciálegyenlet –, relativisztikus esetben a Dirac-egyenlet – elsőrendű differenciálegyenlet – írja le, melyben a Hamilton-függvény, a rendszer összenergiáját leíró operátor felelős az időbeli változásért (a Dirac-egyenlet csak a feles spinű részecskéket írja le).
Minden megfigyelhető mennyiséget egy sűrűn definiált hermitikus (ejtsd: ermitikus) lineáris operátor reprezentál. Egy megfigyelhető mennyiség minden saját állapotához az operátor egy sajátvektora tartozik, és az ehhez tartozó sajátérték a mennyiség értékét adja az illető saját állapotban. Ha az operátor spektruma diszkrét, a mennyiség csak ama diszkrét sajátértékeket veheti fel. Ezeket a sajátértékeket hívjukkvantumszámoknak. Például a szabad részecske energia-operátorának spektruma folytonos, míg például a harmonikus oszcillátor energia-spektruma diszkrét.
Egy mérési eljárás alatt annak a valószínűsége, hogy a rendszer hullámfüggvénye valamelyik saját állapotba omlik össze, a sajátállapotvektor és az állapotvektor skaláris szorzatának abszolútérték-négyzete. A mérés lehetséges eredményei az operátor sajátértékei, melyek Hermite-féle operátorok esetén valós számok – ez magyarázza, hogy miért hermitikus operátorokat használunk. Egy megfigyelhető esemény valószínűség-eloszlását egy adott állapotban a megfelelő operátor spektrális dekompozíciójával számíthatjuk ki.
Heisenberg-féle határozatlansági reláció azzal a formális állítással írható le, hogy bizonyos megfigyelhető eseményekhez tartozó operátorok nem felcserélhetőek. Nagyon fontosak az olyan fizikai mennyiségekhez tartozó operátorok, amelyek egymással felcserélhetők. Az ilyen fizikai mennyiségek egyszerre tetszőleges pontossággal mérhetők, ezért alkalmasak egy fizikai rendszer állapotának a jellemzésére. Az egymással felcserélhető operátoroknak ugyanis van közös saját állapotrendszere, amihez az említett összes felcserélhető operátornak határozott sajátértéke, azaz az illető fizikai mennyiség határozott értéke tartozik. Mindezen operátorok közül a Hamilton-operátor kitüntetett helyzetű, ennek sajátértékei az energia lehetséges értékei. A Hamilton-operátorral felcserélhető operátorok megmaradó fizikai mennyiségeket írnak le.

Kvantumtérelmélet


A relativisztikus kvantummechanika Dirac első értelmezésében állandóan jelenlevő végtelen sok részecskét (Dirac-tenger) követelt meg az antirészecskék leírására, amelyek betöltötték az összes lehetséges alsó energiájú állapotot. Ez az értelmezés még fermionok esetén is kicsit kényelmetlen, bozonok esetén viszont, ahol egy állapotban akárhány részecske lehet, értelmetlen. Olyan elméletre volt szükség, ami le tudja írni a részecskék számának változását. A megoldást a második kvantálás, az eddig függvény vagy matematikai vektor hullámfüggvény operátorosítása jelentette. A hullámfüggvény részecskekeltő és eltüntető operátorok lineáris kombinációjává vált, s ezek az operátorok a részecskeszám-téren (Fok-tér) hatottak. Az így megszületett kvantumtérelmélet ezen leírási módszerét Fok-reprezentációnak nevezzük a kezdeményező Vlagyimir Alexandrovics Fok orosz fizikus, matematikus után.
Az első ilyen elmélet, a kvantum-elektrodinamika, az elektromágneses kölcsönhatás kvantumtérelméletének sikere ösztönzőleg hatott a kvantumtérelmélet további általánosításai irányában. A téridő szimmetriái után az ún. belső szimmetriák felfedezése, amiknek legrégebben ismert példája az elektrodinamika mértékinvarianciája vezetett a mértéktérelméletek kifejlesztéséhez. Ezek igen gyümölcsözőnek bizonyultak az anyag olyan kölcsönhatásainak, mint az elektromágnesesgyenge és erős kölcsönhatás kvantumtérelméleti leírásában.

Relativisztikus kvantummechanika


Induljunk ki Heisenberg határozatlansági relációiból. Az egyik azt állítja, hogy nem lehetséges az impulzus és a helykoordináta együttes tetszőleges pontosságú mérése, a másik pedig azt, hogy nem lehetséges az energia mérése úgy kétszer egymás után, hogy a két mérés tetszőleges rövid idővel követi egymást, és a két energiamérés tetszőleges pontossággal ugyanazt az értéket adja. Az utóbbi esetben nagyon fontos tehát hangsúlyozni, hogy nem az energia és idő együttes mérésének tetszőleges pontosságáról van szó, fizikai, pontosabban kvantummechanikai értelemben ugyanis az időt nem lehet mérni, az egy külső paraméter. Amikor időmérésről beszélünk, azt mindig klasszikus newtoni, vagy speciális einsteini – ami ugyanaz – értelemben tesszük.
A helyre és időre vonatkozó határozatlansági relációban ténylegesen a sebesség lép fel, ebből származódik a klasszikus impulzus, ahol egyikre sincs semmilyen felső határ. A relativisztikus esetben viszont a sebességnek van felső határa, a fénysebesség, ezért ott az impulzusnak is van felső határa. Nagyon fontos megjegyezni, hogy az impulzusra ez a felső határ csak a határozatlansági relációban létezik, ahol az impulzust a sebességből származtatjuk. Egyébként az impulzusnak nincs felső határa, ahogy az energiának sem, amivel az impulzus négyesvektort alkot, hacsak nem a Planck-energia és a Planck-impulzus.
A határozatlansági relációban fellépő felső impulzushatár miatt viszont a koordinátamérés pontosságára abszolút alsó határ lép fel, azaz a relativisztikus kvantummechanikában a koordinátamérés elveszti értelmét.koordinátareprezentáció helyett kizárólag az impulzusreprezentációt használhatjuk, azaz a kölcsönhatások és mérések során az energia és impulzus változásait tudjuk csak pontosan követni, implicit módon feltételezve, hogy elég hosszú ideig mérünk. A tökéletes méréshez végtelen hosszú ideig kellene mérnünk, de a klasszikus mérőeszközeinknek amúgy is van egy mérési hibája, és a mérési idő elég hosszú ahhoz, hogy az elvi hiba ezen gyakorlati hibán belül legyen.
A megtalálási valószínűségben a hullámfüggvény abszolútérték-négyzete, azaz a hullámfüggvény és komplex konjugáltjának a szorzata lép fel. A nem relativisztikus elméletben ez, a sűrűség-eloszlás, egyskalármennyiség, a relativisztikus elméletben viszont a négyes áramsűrűség időszerű komponense. A komplex konjugált viselkedése ezért a nem relativisztikus elméletben tökéletesen meghatározott az eredeti hullámfüggvény viselkedése alapján, a relativisztikus elméletben viszont a komplex konjugált önálló életre kel, önálló szabadsági fokokká válik. Matematikailag ez azt jelenti, hogy a nem relativisztikus elmélet kétkomponensű komplex spinorjai helyett négykomponensű Dirac-spinorok tudják leírni a részecskéket, s fizikailag a részecskék száma megduplázódik, mert megjelenik (majdnem) mindegyiknek az antirészecskéjeis. Az antirészecskék létezése a Lorentz-invariancia egyenes következménye. Másrészt az antirészecskék kísérleti megfigyelése a Lorentz-invariancia és a speciális relativitáselmélet egyik kísérleti bizonyítéka.