2009. október 8., csütörtök

Matematikai formalizmus


A kvantummechanika szigorú, formális matematikai felépítésében, mely többek közt Paul Dirac és Neumann János nevéhez fűződik, a kvantummechanikai rendszerek lehetséges állapotait egységvektorokkal(„állapotvektorok”) reprezentáljuk, melyek a komplex szeparábilis Hilbert-tér egységgömbjét alkotják (az „állapotteret”) A Hilbert-tér pontos meghatározása az adott fizikai rendszertől függ, például ha egy elektronburok elemeinek a tér adott pontjában való tartózkodási valószínűségét, az elektronfelhő „intenzitását” akarjuk leírni, akkor célszerű a négyzetesen integrálható függvények Hilbert-terét használni ennek leírására, míg egyetlen elektron spinjének állapotterét pusztán két komplex sík direkt szorzata is leírhatja.
A kvantumállapotok időbeli változásait nem relativisztikus esetben a Schrödinger-egyenlet – másodrendű differenciálegyenlet –, relativisztikus esetben a Dirac-egyenlet – elsőrendű differenciálegyenlet – írja le, melyben a Hamilton-függvény, a rendszer összenergiáját leíró operátor felelős az időbeli változásért (a Dirac-egyenlet csak a feles spinű részecskéket írja le).
Minden megfigyelhető mennyiséget egy sűrűn definiált hermitikus (ejtsd: ermitikus) lineáris operátor reprezentál. Egy megfigyelhető mennyiség minden saját állapotához az operátor egy sajátvektora tartozik, és az ehhez tartozó sajátérték a mennyiség értékét adja az illető saját állapotban. Ha az operátor spektruma diszkrét, a mennyiség csak ama diszkrét sajátértékeket veheti fel. Ezeket a sajátértékeket hívjukkvantumszámoknak. Például a szabad részecske energia-operátorának spektruma folytonos, míg például a harmonikus oszcillátor energia-spektruma diszkrét.
Egy mérési eljárás alatt annak a valószínűsége, hogy a rendszer hullámfüggvénye valamelyik saját állapotba omlik össze, a sajátállapotvektor és az állapotvektor skaláris szorzatának abszolútérték-négyzete. A mérés lehetséges eredményei az operátor sajátértékei, melyek Hermite-féle operátorok esetén valós számok – ez magyarázza, hogy miért hermitikus operátorokat használunk. Egy megfigyelhető esemény valószínűség-eloszlását egy adott állapotban a megfelelő operátor spektrális dekompozíciójával számíthatjuk ki.
Heisenberg-féle határozatlansági reláció azzal a formális állítással írható le, hogy bizonyos megfigyelhető eseményekhez tartozó operátorok nem felcserélhetőek. Nagyon fontosak az olyan fizikai mennyiségekhez tartozó operátorok, amelyek egymással felcserélhetők. Az ilyen fizikai mennyiségek egyszerre tetszőleges pontossággal mérhetők, ezért alkalmasak egy fizikai rendszer állapotának a jellemzésére. Az egymással felcserélhető operátoroknak ugyanis van közös saját állapotrendszere, amihez az említett összes felcserélhető operátornak határozott sajátértéke, azaz az illető fizikai mennyiség határozott értéke tartozik. Mindezen operátorok közül a Hamilton-operátor kitüntetett helyzetű, ennek sajátértékei az energia lehetséges értékei. A Hamilton-operátorral felcserélhető operátorok megmaradó fizikai mennyiségeket írnak le.

Nincsenek megjegyzések:

Megjegyzés küldése